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We consider an infinite vortex line in a viscous fluid interacting with a plane boundary surface at right

angles to the line. If the boundary surface were absent, the vortex would impart to the fluid a circular

motion about the vortex line with speed inversely proportional to the distance to the line. The presence of

the boundary surface, however, leads to a secondary flow due to the forced adherence of the fluid at the
o surface.

The purpose of the paper is to describe a family of exact solutions of the Navier-Stokes equations
which applies to the above situation. Under quite general hypotheses, it is shown that there can exist
only three types of motion compatible with the assumed structure. In the first kind, the radial velocity
component (using spherical polar coordinates about the point where the vortex meets the plane surface)
is directed inward along the plane surface and upward along the axis of the vortex. In the second type of
motion the radial velocity component is directed inward along the plane surface and downward on the
axis, with a compensating outflow at an intermediate angle. In the third kind the radial velocity is directed
outward near the plane and downward on the central axis. The results can also be used as a basis for
numerical calculations of the solutions in question, and several typical flow patterns have been explicitly
computed in order to illustrate the theory.

The paper concludes with a discussion of the relation between the theoretical solutions and observed
phenomena near the point of contact of tornadoes with the ground; this requires that the flows under
discussion be considered as mean motions in a turbulent flow with constant eddy viscosity. The present
work adds theoretical weight to the argument that central downdrafts can occur in tornadoes. Moreover,
the model provides an explanation, other than centrifugal action, for the frequent appearance of a cascade
effect at the foot of both tornadoes and water-spouts; finally it offers a unified point of view from which to
consider the diversity of flow patterns observed when vortex fields interact with a boundary surface.
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326 J.SERRIN

INTRODUCTION

Consider an infinite vortex line in a viscous fluid or gas, interacting with a plane boundary
surface at right angles to the line. If the boundary surface were absent, the vortex would impart
to the fluid a circular velocity about the vortex line of magnitude C/r, where r is the radial distance
to the line and the line is assumed for simplicity to be straight. On the other hand, the presence
of the boundary surface, which we may suppose te be horizontal and represented by the equation
z = 0in rectangular coordinates, leads to a secondary flow due to the forced aherence of the fluid
at the surface.

In a general way, under these circumstances we may expect that the loss of circulatory velocity
near the plane surface, due to adherence, will produce an unbalanced pressure field near this
surface, which falls as one moves towards the axis of the vortex. As a consequence the secondary
flow should be directed toward the vortex, and this in turn should create an updraft along its
axis. Such a picture is an intriguing one, especially if one is interested in explaining various
phenomena of dynamic meteorology. An important and fundamental difficulty arises, however,
in attempting to find specific mechanisms (i.e. particular solutions of the Navier—Stokes equations)
which account for such swirling or spiral vortex motions in the space z > 0.

In this regard, the Russian engineer M. A. Goldstik discovered an interesting exact solution of
the Navier—Stokes equations for viscous incompressible flow. His solution partially displays the
features required but unfortunately is available only at values of the dimensionless parameter

k= C|2v

so low as to cast doubt on its applicability to many situations of practical significance (here v
denotes the kinematic viscosity). It turns out, however, that Goldstik’s solution is just one of a
broader class, and that in this broader class we can find swirling motions which exist at arbitrary
values of £. Naturally, such vortex motions cannot be entirely transparent and simple to the eye
(otherwise surely someone would have long since discovered their structure). Thus it might
be expected that the initial picture of a simple secondary motion involving inflow and an
updraft needs further modification, and indeed this is the case for the solutions we shall discuss
here.

Specifically, we find that there exist three types of swirling vortex motion compatible with the
structure assumed here (see § 1). In the first kind, the radial velocity component (in spherical
coordinates) is directed inward near the plane z = 0 and upward near the axis of the vortex;
thus in executing a motion of this kind the fluid near the boundary plane is drawn inward in
tightening spirals toward the z-axis and is then swirled upwards in helical paths about the axis.
This type of motion, similar to that determined by Goldstik and displaying features of the kind
indicated in the opening discussion, can exist however only for values of £ less than 2.86. In the
second kind of motion the velocity component is directed outward near z = 0 and downward
near the vortex axis. This type of flow exists at arbitrary values of £, as does also the third kind in
which the radial velocity is directed inward both near the plane z = 0 and near the vortex
filament. For the latter motion there is of course a compensating outflow occurring at a suitable
intermediate cone of directions. The downdraft in the second and third types of motion tends to
be fairly strong as is the compensating outflow in the third case. Moreover, in the second type of
motion, namely when there is a downdraft along the vortex line and an outflow near z = 0, the
flow pattern develops a boundary layer as C/2v becomes large. That is, except in the immediate
neighbourhood of the boundary surface the angular velocity about the vortex line becomes
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nearly C/r, as required by the irrotational flow, while in the boundary layer itself the angular
velocity rapidly changes from zero at the boundary surface to the main streaming value CJr
required by the vortex.

Clearly the variety and complexity of these flows may be of value in explaining the diverse
behaviour of naturally occurring vortex phenomena. At the same time, irrespective of such
applications, the motions studied here are also interesting for the fact that they are among the
more complicated examples in which a boundary value problem for the Navier—Stokes equations
can be reduced to the solution of ordinary differential equations (and hence for which a relatively
explicit determination of the flow pattern is possible). Considering the difficulty always experi-
enced in finding significant exact solutions of the Navier—Stokes equations, there seems to be
sufficient reason on this ground alone to justify the present analysis.

This much being said, I feel compelled to add that the solutions discussed here are not intended
as a definitive and final answer to the problem of interaction of a vortex filament with a plane
boundary. There is certainly no reason to suppose that some other (possibly non-steady) type of
flow might not equally well or better describe this interaction; moreover, the singularity existing
along the axis of the line vortex is itself a mathematical idealization of the phenomenon of vortex
motion in real fluids. Finally if one is concerned with meteorological phenomena it must surely be
decided at some stage whether the Navier—Stokes equations themselves are suitable for the
explanation of these phenomena, or alternately whether thermal and compressibility effects play
a significant part in the actual motion (besides supplying the ultimate driving energy). On the
available evidence, however, there seems to be no conviction that naturally occurring vortices
must necessarily and in all cases be fundamentally compressible phenomena. Indeed, the time
scales at which tornado phenomena occur do not indicate the action of either buoyancy or
compressibility as an important determinant of the local structure of the air motion; and even in
cases where compressibility, buoyancy, and other effects are surely present, it is not improbable
that further understanding can be gained from an incompressible analogy. Consequently, at the
present stage of investigation it remains a reasonable assumption to adopt the Navier—Stokes
equations as an appropriate model for fluid motion in a vortex.

Before proceeding to the main considerations, it should perhaps be added that when one is
dealing with a solution of the Navier—Stokes equations the actual energy source is irrelevant to
the structure of the solution: the solution exists as a dynamically possible fluid motion and nothing
more is required of it. In the real world the solution expresses a local situation, and the energy to
produce and drive it comes from outside. The mode by which this energy is imparted to the flow
is of course ultimately of interest; when we deal as here with a solution which idealizes a swirling
motion by means of a line vortex, the vortex singularity can serve as a source of momentum, this
being entirely consistent with the interpretation of the solution as an asymptotic limit (as the core
radii shrinks to zero) of a family of flows not containing a singularity. Morton (1966, p. 186) gives
an excellent account both of the relation of the concentrated vortex core to the main motion and
of the driving mechanisms likely to be involved in typical tornado and waterspout phenomena.

The paper is divided into four parts. The first chapter is concerned with the basic structure of
the vortex and with the derivation of an appropriate system of differential equations govern-
ing the motion. The system itself consists of a coupled pair of nonlinear ordinary differential
equations, one of the fourth order and the other of second order, subject to five boundary con-
ditions. The value £ = C/2v appears as a parameter multiplying the highest order derivatives;
thus, taking into account that there is one fewer boundary condition than the order of the system

27-2
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328 J.SERRIN

allows, it is apparent that we must ultimately deal with a two-parameter family of solutions.
Using a technique introduced by Goldstik and in fact appearing in a special form even earlier
in the work of Slezkin, the basic equations can be reduced to a first-order integro-differential
equation of essentially more manageable proportions. This reduction is carried out in § 2. The
second chapter is then concerned with the structure of the solutions of the problem; in particular,
it is shown there that solutions have the general form described above.

Chapter 11 is a general study of the existence and non-existence of motions corresponding to
different values of £. Because of the inherently complicated nature of the basic equations this
work involves some difficulties. We have therefore made every effort to proceed as simply as
possible, while at the same time aiming at completeness. The final section of chapter 111 contains
the results of numerical calculations carried out at typical values of £.

With the exception of the work of Goldstik, most theoretical models of the interaction of a
vortex and a plane surface have not included a singularity at the vortex axis. In the work of
Burgers (1948) and Sullivan (1959), maintenance of a continuous velocity field throughout the
vortex core is, however, accomplished at the cost of dropping the adherence condition at the
boundary surface; moreover, in this work the velocity field does not approach zero as one
proceeds radially away from the vortex (in fact, the speed becomes arbitrarily large), a drawback
which remains even following boundary-layer analysis of the transition from slip flow to
adherence at the boundary plane. Unsteady vortices corresponding to those of Burgers and
Sullivan have been studied in interesting papers of Rott (1958), and Bellamy-Knights (1970). In
work more closely allied to the present approach, Long (1958, 1961) has carried out a similarity
analysis analogous to that given in § 1, and has considered boundary conditions which avoid the
singularity at the axis, though again at the expense of dropping the adherence condition at the
boundary surface.

It would be quite removed from our purposes to review the literature on boundary layers
induced by vortex motion. We do however draw attention to a recent paper of Burggraf,
Stewartson & Belcher (1971) in which they present a boundary layer analysis of a potential
vortex interacting with a finite disk. In their work it is shown that a finite mass flux occurs at
r = 0, and they comment that this should cause an eruption at the vortex axis. It is precisely
here that a further alteration of their flow field would be necessary; our work bears this out
in that we do not find steady motions which exhibit inflow-type boundary layers, but obtain
instead the rather more complicated flow patterns described earlier. Further valuable work on
the boundary layer induced by a maintained vortex is due to Kuo (1971).

We emphasize that our model obeys both the strict adherence condition at the boundary surface
and the requirement that the velocity approach zero as one proceeds radially away from the vortex.
On the other hand, because of the singularity at the axis, the physical interpretation of the results
must be approached with care. The final part of the paper summarizes our results and contains
a discussion of their possible bearing on meteorological phenomena. In particular, the present
model adds theoretical weight to the argument (advanced by Oerstad in 1838 and periodically
recurring in the literature) that central downdrafts can occur in tornadoes. Moreover, the model
provides an explanation, other than centrifugal action, for the frequent appearance of a cascade
effect at the foot of both tornadoes and waterspouts; finally it offers a unified point of view from
which to consider the diversity of flow patterns observed when vortex fields interact with a
boundary surface.
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CHAPTER I. FORMULATION OF THE PROBLEM
1. Basic equations

It is convenient to introduce spherical polar coordinates (R, &, 0), where R is radial distance
from the origin, « is the angle between the radius vector and the positive z-axis, and 6 is the
meridian angle about the z-axis. The positive z-axis is then described by & = 0, the boundary
plane z = 0 by & = }m, and the half space z > 0 by R > 0, 0 < a < 4. The respective physical
components of the velocity vector v in this coordinate system will be denoted by

Vp, Uy Upe (1)

We shall consider here steady-state fluid motions having the basic structure

G
vR=_§.‘_xl) a

Fx) £(x)
G 2)
where r = Rsin« is the distance to the z-axis, and # = cosa. One finds immediately from the
equation of continuity that .
E Y G = F'sina,

the prime denoting differention with respect to x. The functions F and £2 are of course to be deter-
mined so that the flow is dynamically allowable (that is, satisfies the Navier-Stokes equations).

We remark that the particular functions F = 0, 2 = C'yield a line vortex in space. Our purpose
is to find related functions F and £ appropriate to a swirling vortex motion adhering to the
plane z = 0, as described in the introduction.

The first necessity is to derive appropriate differential conditions under which the basic
motion (2) satisfies the Navier-Stokes equations. These equations, expressed in spherical
polar coordinates, are reproduced in several standard fluid mechanics texts, cf., for example,
Berker (1963, p. 6). Using the relation

= —sina—

da ox’

we find after some calculation that the R, &, and 6 components of the Navier—Stokes equations
become respectively

" ’ Raaﬁ /- "
—FF" — F"2— (F2+4 Q%) cosec?ot = —— x5+ v(F"sin? o« — 2F" cos at),

p OR
o

—FF' — (F?+ %) cot . cosec & =-—§—ipl—rgg—§—vF”sin2a,
2

—FQ = —%g‘g-i- vQ"sin? o,

where p is the density, p the pressure, and » the kinematic viscosity, and where external forces
have been absorbed into the pressure term.

From the last of these equations it is evident that p must be independent of 6 (more precisely,
£ is at most linear in 6: since p must be periodic in 6, it is thus independent of #). Now using the
first equation, it follows that

AT p_ A

S=

+ B(x).
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330 J.SERRIN

Substituting this into the second equation shows that B(x) must be a constant; hence writing
A(x) = m(x) cosec?a we obtain

p_ )

p Risin’a

+constant = 7—7%)— + constant. (3)

Comparing this with the first equation then gives the pressure formula
— 2 = F2+ Q2+ {FF" + F"? + p(F" sin*a — 2F" cos &) } sin®ax. (4)
With the help of (4) we may eliminate p from the second equation. After some calculation this
yieldst the following ordinary differential system for the functions ¥ and £,
»(1 —2) FYY —4pxF" + FF" 4+ 3F'F" = —20Q0Q'[(1 —x?)
r(1—x2) Q"+ FQ' = 0.

Solutions of the system (5) provide a broad class of motions satisfying the Navier—Stokes

(%)

equations. Our interest here will be in the particular boundary value problem obtained when the
0-component of the velocity approaches the vortex value C/r as o tends to zero and the adherence
condition v = 0 is satisfied when « = }. Thus we shall consider (5) on the interval 0 < x < 1

with boundary conditions
Q=F=F =0 when x=0}
Q-C as  x—>1)°

(6)

To these conditions must be added a restriction assuring that the vortex line a = 0 is neither a
source nor a sink of the fluid motion, namely

F—>0 as x—1. (7

In order to verify the appropriateness of condition (7), it is convenient to introduce the
function ¢y = RF(x). Let & be a surface of revolution about the z-axis generated by a meridian
curve %. Then using the fact that

bt W1 W
R R2sinada’ * RsinadR’
it is easy to show that the total flux of fluid through & is 21|y, — 4|, where ¥, and i, denote the
respective values of i at the end-points of the curve €. If we now suppose that € joins two
distinct points on the z-axis, the condition that this axis be neither a source nor a sink of the fluid
motion is obviously that the flux through the corresponding closed surface & be zero. It follows
that in this case yr; = 1, which in turn holds if and only if ¥ — 0 as x — 1. This proves (7).

For later use, we note that the surfaces ¥ = constant contain the streamlines of the fluid
motion. Thus these surfaces provide a useful method of flow visualization, in the same way as the
streamfunction of an ordinary two-dimensional fluid motion.

Remarks. In § 4 we shall show that the reduced pressure 7 = r%p/p approaches the value —3C?
when o tends to zero, in analogy with the case of a line vortex.

The basic separation of variables assumption can be clarified by a simple dimensional analysis.
In the interaction problem as posed in the opening paragraphs of the introduction, neither a

+ The derivation is facilitated by first writing 7 in the form
-2 = F2+ Q22+ v(1—x%) S
where § denotes the expression enclosed by braces in (4). Equations (5) can also be derived from the last two

relations on page 115 of Goldstein’s Modern developments in fluid mechanics, vol.1 (this process does not, however, yield
formula (4) for the pressure).
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preferred velocity nor a preferred distance is present: we have only the angular momentum Cand
the kinematic viscosity v as basic physical constants, both having the dimensions L2/T. Their
ratio is therefore a dimensionless parameter k£ of the flow: This being the case, if we consider
solutions which are independent of time and which are rotationally symmetric (i.e. the velocity
components are independent of 0), then necessarily the dimensionless quantity r¢/C can depend
only on the dimensionless variables o and %, unless we are prepared to consider solutions with
some preferred distance added in. Since there is no @ priori reason for including such a distance,
it is therefore reasonable to consider solutions of the form (2).

Long (1958) introduced a system equivalent to (5) and gave an asymptotic analysis of the
solutions under a set of boundary conditions different from those here. The system (5) also
appears in Goldstik’s work, though in somewhat disguised form (we note finally that the special
case 2 = 0 of (5) was discovered by Slezkin; cf. Berker (1963, p. 59)).

2. Reduction to an integro-differential equation

In the preceding section we derived for the swirling vortex motion a sixth-order system of
ordinary differential equations subject to five boundary conditions. It is therefore apparent that,
even when v and C are fixed, we must deal with a one-parameter family of fluid motions. This
extra degree of freedom is vital to our further considerations.

The system (5) can be considerably simplified, since the first equation can be immediately
integrated three times to give the relation

(1 —x2) F' +4vxF + F? = — xdx mdx xég—g—dx—i-PxZ+Qx+S, (8)
o Jo Jol-2a?

where P, @, S are constants of integration.} Setting # = 0 and using the boundary conditions (6)
yields § = 0.

In order to derive a further relation between the constants P and @, note that the triple integral
in (8) can be rewritten as . f (x—1)?

r

this in turn can be integrated by parts to the form
e(x—1) (1=xt) .y
2 j R (P Q2dt

by making use of the boundary condition £2(0) = 0. The function £ is bounded on the interval
[0, 1]. Hence as x tends to 1 the above integral converges to the value

9 J‘ 1oQ2de
o (1+2)*
Consequently using (7) and (8) we find that
(1—-x) F" - constant as «x - 1. (9)

If the constant is non-zero, say positive, then for x suitably near 1 we have /' > ¢/(1 —x). This
implies in turn that F becomes infinite as x tends to 1, in contradiction to (7). Since the same
argument applies if the constant is assumed to be negative, it follows that (1 —x) F’' — 0 as x — 1.

P2 5 (10)

1 For the special case 2 = 0 this integration was found by Slezkin.

Consequently from (8) we have
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One of the constants P and @ can be assigned arbitrarily, according to the remarks at the
beginning of the section. Choosing P as the basic parameter, and using (10) to eliminate ¢ from

(8), then gives the relation 99(1 =) F' + dvxF+ F? = G(x), (11)
where
¢ 102 L 2dt
= 2(1 —x)2 = P(x—x?
G(x) =2(1—x) fo (1~t2)2dt+ 2xfw L P(x—x2%). (12)
A final change of variables F=2v(1-2%f, k=1/2v (13)
yields the integro-differential system
G(x)
4 2 — f2
Jar=k (1—x2)2} (0<x<1), (14)
Q"+2fQ =0

where G(x) is given by (12), and fand £ are subject to the boundary conditions
f=802=0 when x=0, Q->C as x—>1. (15)

In view of the change of variables 2 - C3, P - C?P, k - l~s/|C |, we can suppose without loss of
generality that C—1 (16)

This normalization will be maintained throughout the rest of the paper. Note that k then becomes the
basic dimensionless parameter of the flow (i.e. the normalized value % is |C|/2v). We note that in
laminar flow & may be considered as a Reynolds number; if turbulent motion is assumed and v
correspondingly denotes the kinematic eddy viscosity, then it is more proper to view £ as a self-
regulating parameter indicating the basic level of turbulence present. Typical values of k are
given in the final section of the paper.

So far, it has been shown that (14), (15) is a consequence of (5), (6), (7). In§4 it will be proved
conversely that any solution of (14), (15) is also a solution of (5), (6), (7), so that the two systems
are in fact equivalent.

For the special case P = 1 the system (14) was derived by Goldstik, by a much more com-
plicated and circuitous procedure.
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CHAPTER II. STRUCTURE OF SOLUTIONS

In this chapter we consider the general qualitative behaviour of solutions of the system (14),
(15). The fundamental question of existence of solutions will be taken up in the following chapter.

3. The function G(x)

As a first step in discussing the structure of solutions, it is convenient to consider the behaviour
of the function G(x).

LemMA 1. The angular momentum function £2(x) increases monotonically from 0 to 1 as x increases from
0 1.

Proof. From the second equation of (14) we find
' = const. exp (— 2 f wfdx) . (17)
0

Thus £’ always has the same sign. The required conclusion therefore follows immediately from
the given boundary conditions. For later use we note that (17) can be integrated once more to
yield an explicit formula for 2 in terms of f.

Lemma 2. G(x) satisfies the conditions
L o2de
G=0 '=2| ——— = 0;
, G fo(1+t)2 P when x ;

G=0, G'=P-1 when x = 1.

Moreover, G" (x) < 0 for 0 < x < 1.

Proof. We have
z 102 1 Q2dt
=2(1—x)2| —2 L P(x—x?
G(x) = 2(1—x) fo (l_tz)de—fo L P(x—x2%),

x

, 02 1 02d¢

The values of G and G’ at x = 0 are apparent by inspection. Their values at x = 1 follow by
application of L’Hépital’s rule for the indeterminate form 0.c0. We have also

s [ 1 202
6" (x) = 4]0 ol gt 2P
400

R

and the remaining part of the lemma follows at once.
In what follows it is convenient to put G'(0) = @, in agreement with the relation (10). Then the
following lemma holds.

Lemma 3. Let Q = G'(0). Then for 0 < x < 1 we have
RQx—x?) < G(x) < (1-P) (x—x2).

28 Vol. 271. A,
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Proof. The function H(x) = G(x) — Q(x — x?) satisfies H(0) = H(1) = 0, H'(0) = 0,and H"” < 0.
From the last condition it follows that " has at most a single zero. Hence H is either convex, or
first convex and then concave, or everywhere concave in the interval 0 < x < 1.

The boundary conditions show that H cannot be everywhere convex or concave. In the
remaining case (first convex and then concave) the boundary conditions imply without difficulty
that A > 0. This proves the left hand inequality.

To prove the rlght hand 1nequahty, consider the function A (%) = G(x) — (1 —P) (x—=x?).
Here i (0) = A( 1) = H’( ) = 0,and A" < 0. The dual of the previous demonstration now yields
i< 0, completing the proof.

As a consequence of lemma 3 it follows that, for 0 < ¥ < 1,

G(x) >0 when @ >0, and G(x) <0 when P>1

Moreover, in the remaining case when @ < 0 and P < 1, the function G is first negative, has a
single zero on the interval 0 < x < 1, and is positive thereafter. In fact, G” < 0 so that G” has at
most one zero. Consequently G is either convex, or concave, or first convex and then concave.
Evidently only the last case is compatible with the boundary conditions G(0) = G(1) = 0 and
G'(0), G'(1) < 0. But then G must be first negative and then positive.

4. Behaviour of solutions

In this section we investigate the behaviour of solutions of the system (14), (15). The purpose
of the first theorem is to show that this system is equivalent to the original problem posed in § 1.
We begin with three important lemmas.

LEmMA 4. Suppose P < 1. Then  f< }(1—P)k? ln

—-x"

Furthermore, if Q > 0 then f is positive, while if Q < O then f is either everywhere negative, or else first
negative and then positive thereafter.t

Proof. By lemma 3 we have G(x) < (1—P) (x—x2). Thus using (14) and the fact that
<i(1+#)%
we find f <3i(1-P)R(1—x).
Integrating this and making use of the initial condition f (0) = 0 proves the first part of the lemma.

Multiplying the first equation of (14) by the integrating factor exp (fodx) and carrying out
0

the resulting integration yields the relation

f= k2f (E exp( ffdu)dt

where we have used the initial condition f(0) = 0. Now if @ > 0, then G > 0. Hence fis positive.
When @ < 0 and P < 1 we have seen that G is first negative and then positive. Therefore f is
negative for small x. At the first zero of f (if any) we surely have G > 0. But then G > 0 for the
remainder of the interval, and f > 0 there exactly as before.

LemMA 5. If P > 1 then fis negative and decreasing.

+ Itis convenient to exclude the points x = 0, 1 when referring to the sign of f. This convention, and a similar one
Jor G and 2, will be adhered to throughout the paper.
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Proof. Recalling that G < 0 in the present case, we have

f= kz(lc’;(’;)z)z-fz <0, (18)

and the required conclusion follows at once using the fact that f(0) = 0.

LemMA 6. Let f be a solution of (14), (15). Then

f= O(In——) as x—>1.

This result is slightly technical, and accordingly its proof will be deferred until the end of the
chapter. We may now turn to the main results of the section.

THEOREM 1. Let f, 2 be a solution of the system (14), (15). Then F, 2 is a solution of (5) satisfying the
boundary conditions (6), (7). Moreover the reduced pressure 7(x) satisfies

m(0) = ~4P, (1) = -4, (19)
Here we have assumed the normalization C' = 1; otherwise the relations (19) would be replaced
by 7(0) = —4PC? and m(1) = —3C2

Proof of Theorem 1. In view of the derivation of (14), the result is obvious except possibly for the
boundary conditions F'(0) = F(1) = 0and the pressure relations (19). We have by (13), however,

F' = 2v(1 —2) f' — dvxf.

Since f(0) = G(0) = 0 it follows from (14) that f’(0) = 0. Consequently F'(0) = 0. Also by
lemma 6 F=2r(1-x2)f—->0 as x—1
To prove (19), differentiate (11) twice and use the resulting relation to eliminate the quantity
F" from (4). This yields the formula

=27 = F2+ Q2%+ 1(1 —»?) (G"— 4vF").
A further simplification is available if we use the identity (1 —#2) G" +xG' — G = P —Q?; thus
finally —2m = P+ 2F*+ (4vF - G') x.

The required result now follows from lemma 2 and the boundary conditions for F.
The first condition of (19) provides a physical interpretation for the parameter P. Indeed,

using (3) we find that
— -2——7—2+ constant when o~ 0  (z-axis),

?
p

1
— 3,3+ constant when o =43mw (z=0).

or, without the normalization C = 1,

2
~32 +4constant when a~ 0
2

—-2—2+constant when « = im.

DI
I

Thus at the boundary plane the pressure p is (up to an additive constant) exactly P times the
pressure in the corresponding free vortex. In particular if P > 0 then the pressure at the boundary

28-2
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plane decreases as one approaches the vortex line (as noted heuristically in the introduction),
though the rate of decrease will be the same as in a free vortex only when P = 1.

Theorem 1 shows that the problem (5), (6), (7) is equivalent to the problem (14), (15).
Therefore from here on we may confine our discussion to the latter system. The following theorem
is a more precise version of the results of lemmas 1, 4, 5 and 6.

TrEOREM 2. Let f, 2 be a solution of the system (14), (15). Then the following results hold.

(i) Suppose P < 1. If G'(0) = O then f is positive, and 2 is increasing and concave. If G'(0) < O then
Sis first negative, has a single zero on the interval 0 < x < 1, and is positive thereafter; correspondingly Q is
Sirst convex and then concave.

(ii) Suppose P > 1. Then f is negative and decreasing, and Q is increasing and convex.

(iii) When P = 1 the function f tends to a finite negative limit as x tends to 1. In all other cases

1
Nl —_— 2 ——
f~31-P)BPlng—.

Proof. The first statement of part (i) is simply a rewording of part of lemma 4, together with the
observation that 2" = — 2f0Q" < 0. To prove the second part of (i), note that from lemma 4 either
Jfis everywhere negative or else first negative and then positive thereafter. By part (iii), which we
shall prove below, it is clear that f > 0 for x sufficiently near 1. Consequently the only case which
can occur is that f'is first negative, and then positive thereafter.

Part (ii) follows from lemma 5 and the fact that Q" = —2fQ’ > 0.
It remains only to prove part (iii). Suppose first that P & 1. Then by lemma 2 and lemma 6
G(x)
)V =TV (] k) F2 s 1(1 — P) 2
(1=8)f" = P = (=0 > 1= P
as x tends to 1. Consequently fapproaches either + oo or —co and I’Hépital’s rule is applicable:
thus f
li =lim (1—-x)f" = (1 -P) k2,

MR T —%)
as required.

Suppose next that P = 1. We assert that the quantity G/(1 —x)?2 is integrable. Indeed, since
S=0(In1/(1-x))itisclear from (17) that £’ has a finite positive limit B as x tends to 1. Thus by
the last formula in the proof of lemma 2

lim (1 —-x) G" = —2B.

By repeated application of L’Hépital’s rule, therefore,

lim—C% —lim ¢ ctim—% _jim(1-96" - B
— )2 n —— — — R e e
(1-)*In (1 x)(l 21n1*x) 2Int——3

Consequently when P = 1 we have G ~ — B(1—x)%In 1/(1 —x) and the assertion is proved.
Having shown this, it follows with the help of lemma 6 and (18) that f’ is negative and
integrable. Hence ftends to a finite limit as x tends to 1. This completes the proof of the theorem.
The results of theorem 2 can be used to give a qualitative picture of the flow pattern corre-
sponding to various parameter values. For simplicity we shall confine ourselves to the radial
component of the velocity, though the other components can be treated equally well. Now by (2),
(13) and (14) have
G(x)

CF = . _ (L—x%) /2 2xf
Ryp =F' = 2v(1—«2) f —4vxf_k1_x2-_ . -
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For small values of x the first term clearly dominates, and the sign of Rvg will correspondingly
agree with that of G. Moreover, as x tends to 1 we have with the help of lemma 2
1
Rop ~ —3(1-P)kIn—o
1—x
when P % 1, while F’ tends to a positive limit if P = 1. In case P < 1 and @ < 0, the function f has
a zero at some point ¥ = a. Thus G(a) > 0 according to the proof of lemma 4. Therefore at x = a
G(a)

RUR=k1—_2§> 0.

Summarizing, we have the following results.

Let f be a solution of (14), (15). Then f is either everywhere positive, everywhere negative, or first negative
and then positive. Moreover:

A. For positive solutions f, the radial velocity is outward near the plane z = 0 and downward near the
Z-axis.

B. For solutions f which are first negative and then positive, the radial velocity is inward near the plane
z = 0 and downward near the z-axis. This general motion toward the origin is balanced by a compensating
outflow near the streamcone o,y = cos™a.

C. For negative solutions f, the radial velocity is inward near the plane z = 0 and upward near the z-axis
(we shall see later that such solutions can exist only at small values of the parameter k).

Typical stream surfaces for these cases are illustrated in §10. Using theorem 2 we can also
obtain some idea of the relative magnitude of the secondary flow in comparison with the free

vortex. Writing
v=V+w,

where V has components (0, 0, 1/r), it is easy to check that the quantities rwg, rw,, rw, are inde-
pendent of R and tend uniformly to zero as « tends to zero, indicating clearly that the major
effect near the vortex line is precisely the free vortex motion. For positive values of «, both v and
V tend uniformly to zero as R tends to infinity. Finally, while the energy of the free vortex is
infinite in any hemisphere R < Ry, z > 0, it can be shown that the energy of the secondary flow
is finite and strictly proportional to R,.

5. Boundary-layer behaviour of positive solutions

When f'is positive, solutions of (14), (15) exhibit a boundary-layer behaviour, in which as &
becomes large the function £2(x) uniformly approaches 1 on compact subsets of (0, 1]. That is, for
suitably large & the velocity component v, is arbitrarily near that of a free vortex, except for a thin
boundary layer near the plane z = 0. The purpose of this section is to prove this and other
related results.

Let @ = G'(0). By lemma 3 G(x) > Q(x—x2). (20)

Here @ > 0 since we are supposing that f'is positive (we shall in fact consider only fixed positive
values of @; the case @ = 0 requires a more delicate analysis, which is omitted here). Now using
(14) and (20) it is clear that

e

' ) X
S Ry T
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Setting ¢ = Q&2 for simplicity in printing, and noting that (1 —x) (1+x)? < 4 for all x in question,
we have then > Sex—pr. (21)
Thus f > o, where o is defined by the differential equation

o' = $cx—0?, o(0)=0.
[The argument is as follows: put ¢ = f—o. Then

g2o—ft=—(c+f)g
that is g’ + (0 +f) ¢ = 0. Multiplying by an integrating factor and carrying out the integration

then yields (since g(0) = 0) -
gexp (f (o +f) dx) >0
0

as required. A similar comparison method will be used repeatedly in what follows, generally
without specific reference.]
The function o is obviously positive. Moreover, o’ < $cx, so that o < $cx2. Therefore in turn

o' > fox — Fretd,

For 0 < x < ¢~ this yields o’ 2cx and o > }cx2, It is apparent that o is an increasing function
for 0 < x < 1.1 Thus for x > ¢=¥ there results
f3 03 (22)

Letd = ¢~ = (Qk?)~%. By (17)
Q'(x) = 2'(9) exp( ffdx)

Since £ is concave in the present case (see theorem 2) and 0 < 2 < 1, it is clear geometrically
that Q'(8) < 1/0. Hence, making use of (22), we find that for x > ¢

>
, 1 d—x 2 x
Q'(x) séexp(——————26 ) SgeXp(_'ﬁ)‘

Integrating backward from x = 1 (where 2 = 1) then gives
|2-1] < 4e®2 (x> 9).
In particular, if ¥ > N6 and N > 1, then
|2-1] < 4eiV. (23)

This establishes the existence of a boundary layer of nominal thickness & ~ k=% ~ v& corresponding to fixed
Q > 0.

Within the boundary layer the angular velocity component v, is small, but the radial com-
ponent v is positive and of order 3. In order to establish this rigorously, we first show that for

fixed @ > 0, P—>1-Q as k- oo (24)
In fact, by lemma 2 1_p_q=2f =24
n fact, by lemma —-P-Q = o TF0° t

so that by (23) .
0<%(1—P—Q)<f (1-—|-t f JN8<N8+2C—§N

t The function 7 = }./(3¢x) satisfies 77 > $cx—72, whence 7 > 0" and 0/ = 72—02% > 0.
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valid for 1 < N < 1/8, Now choose N = 21n 1/4, which yields

0<1-P—-Q < 2486In1/é (25)
for 8 < 1/4/e, i.e. for Qk* > et. The required limit behaviour now follows at once.
By lemma 3 we have G(x) < (1—P) (x—#?%). Hence for 0 < x < §,
S < (1-P)k%, f<3$(1-P)k%2 (26)
Substituting back into (21) gives
Sz 3ex—3(1—P)2k%* > dex (27)
for 0 < x < f8, where = [Q/(1—P)]? < 1. Thus from (13) and (26)
<< 1Pk (0<x<}).

sina
Also, since F’ = 2v(1—x?) f' — 4vxf, we have by (26) and (27)

1Qkx{1— (1+2[(1 —P)/Q]) %% < F' < (1= P) kx,
valid for 0 < ¥ < #0 (and of course 0 < x < }, as always). In particular, for £ sufficiently large

|Flsine| < MZQ’HC“% (x = M8, M < 1/26)
and Mo <r < ows (=m0, m<1).

Recalling the relations (2), this proves the assertions concerning the asymptotic behaviour of the velocity
components v, and vy, in the boundary layer.

It is a remarkable fact that, even though the fluid is slowed near the wall by the adherence
condition and the pressure at the wall increases outward (when P > 0), nevertheless there is a
strong outward component of velocity in the boundary layer. The explanation of this phenomenon
is that the pressure gradient is for the most part used to oppose the centrifugal force of the vortex
flow, leaving a net outward driving force on the radial velocity.

6. Appendix

Here we shall give the proof of lemma 6. By lemmas 4 and 5, f is either ultimately positive or
everywhere negative. In the former case we must have P < 1, and the required result then follows
from the displayed inequality of lemma 4. We may consequently suppose from there on that fis
everywhere negative.

Consider the function w(x) = —1/2(1—x). Since G(x) = O(1—x) as x - 1 (see lemma 2) it
is easily checked that G(x)

0 < kB—"=

(1—a22
for x sufficiently near 1, say x, < ¥ < 1. Consequently if f = w at some point ¥; > x,, we have
f > o thereafler. It follows that either

2

f>w or f<wo

for all x sufficiently near 1. We shall show that only the first case can actually occur.
Thus suppose for contradiction that f < w on some interval x, < ¥ < 1. Then by (17), for

X = X
Q' = const. ex dx > const, ex
! P P

X3

x

1—
a)dx) — const, —22
1—x
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Since the function on the right-hand side is not integrable, this contradicts the fact that 2 — 1
asx — 1.
Having shown that f > —1/2(1 —x) for x near 1, let us now make the change of variables

¢ =—(1-2)f
in (14). Recalling that f < 0, this gives the result

G(x) o _const.
(1=#%)* = J(1—-2)
for all x near 1. By integration ¢ < constant, and therefore f > —«/,/(1—x) for some positive
constant « and for all x near 1. Substituting this in (14) we obtain

¢ = (14201 -0 gl - =)

G(x) 1 const.
Sy — k2 -
A fur il s Rty p

Hence by integration f > —const.In 1/(1—x). Since f was assumed to be negative, this completes
the proof of lemma 6.
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CHAPTER 1I. GENERAL THEORY

We show in this chapter that the basic set of equations (14), (15) has a solution for certain
combinations of the parameter values £ and P, but not for others.

7. Non-existence of solutions for certain parameter values

It is a surprising and somewhat paradoxical fact that the problem as posed may not have
solutions for high Reynolds numbers and certain fixed values of P. This was already pointed out
by Goldstik for the special case P = 1. Here we shall investigate this phenomenon in more detail
(see also the remarks in chapter 1v).

Consider first the case P > 1. Then f is negative and 2 convex, according to theorem 2.
Consequently 2(x) < x and from (12) we find after some calculation

Gx) < 1+x)?In(1+x) +(1—x)2In (1 —x) —4xIn 2+ (3—P) (x —x?) = I(x).
By numerical computation} we obtain
I(x) < —3x(1—x2)24+ (1 -P) (x—x?) < —(3P) x(1 —x?)2
Consequently if a solution exists, then
S < =Pk —f2.

Itis apparent that the solution f cannot exist on the entire interval from 0 to 1 when the coefficient
of x is large. More specifically, consider the comparison equation

o' =—d*—o? o(0)=0.

By explicit integration, Goldstik (p. 921) found that o cannot be continued over the interval
[0, 1) whenever d > 3p,/2, where p, is the first root of the (Bessel) equation J_y(#) = 0. The same
conclusion therefore holds for the function f by comparison. Consequently we have proved

ProvposiTION 1. There can be no solution of (14), (15) ¢f P > 1 and Pk?* > 9u}/2 ~ 16.

In view of theorem 2 and the result just proved, negative solutions f can exist only when £ is
less than 4. Therefore the most interesting class of vortex motions of the type (2) will have either
f positive or else f first negative and then afterwards positive (such flows correspond to a down-
ward swirling motion in the vortex, as pointed out in § 4).

Consider now solutions f which are first negative and then positive thereafter. Let the zero of
foccur at the position x# = g, 0 < a < 1. Then the following result holds.

ProvrosrTioN 2. For fixed a, 0 < a < 1, we must have

1

Ps—{1+1_a
a

a2

1n(1-a2)]

in order for a solution to exist with f(a) = 0.

t See Goldstik, p. 920. I take it to be legitimate to check an inequality between two elementary functions by a
numerical (digital) calculation of the functions involved. In any case, an analytic proof is available for the inequality
I(x) < —#Px(1—x?)2, which would lead to essentially the same conclusions.

29 Vol. 271. A,
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To prove this, note that by theorem 2 the function £ is convex for 0 < x < @ and concave for
a < x < 1. Consequently, taking into account the boundary conditions on £, it is easy to see that

xla, 0<x<a,
<
.Q(x)\{ 1, a<x<l.

Hence by direct evaluation of the integrals involved in the definition of G, we find that
Gla) < (1_a){1—aP+-17l;f’1n(1_a2)}. (28)

On the other hand, G(a) > 0 as noted in the proof of lemma 4. Comparing this inequality with
(28) yields the required result.

Proposition 2 implies that motions in which f (and consequently F) have both positive and
negative values can exist only at certain values of the parameters. It should be noted in particular

that the function 1

a

1

(145 m 1 -a2)

a

is less than 1 for 0 < @ < 1, and tends to 1 as a - 0, 1. We consider finally the case when f is
everywhere positive.

ProrosrTION 3. In order for a positive solution f to exist we must have
P < K(k),

where K(k) is a positive monotone function of k, which increases from 3 — 4 1n 2(~ 0.224) to 1 as k goes from
0 0 co.

Proof. By integration of (17) from 0 to 1 it is easy to obtain the relation

Q'(0) = {folexp (— 2f:fdx) dx}_l.

Recalling that P < 1 in the present case, we see by lemma 4 that the right-hand side is in turn

1 1 -1
< {f exp (%(P— 1) sz lnl—la—cdx) dx} =exp (3(1-P)#? = 4.
0 o 1-
Therefore since 2 is concave (cf. theorem 2) it follows that

Ax, 0<x
ORI

Thus by lemma 2 and the fact that G’(0) > 0 for a positive solution f, we find

ot @xdr A L
P=2f 00 < - Eo e (), =
dx_ 1+24 1+4
Now ——|—4A{A(1+A)——2ln A} (4> 1).

The quantity in braces is easily found to be a decreasing function, and has the value zero when
A = oo, It follows therefore that dy/d4 > 0 and that y is an increasing function.

If we fix k, the function y(A4) therefore decreases from 1 to 3 — 41n 2 as Pincreases from — oo to 1
(and 4 correspondingly decreases from co to 1). Hence for each £ inequality (29) places an upper
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bound K(%) on P. It is easy to check that K (k) is increasing, and varies from 3 —4In 2 when k = 0
to 1 when £ = oo.

Proposition 3 shows that for £ small, P can be little larger than 3 —41n 2 in order for a positive
solution to exist, while conversely for large £ only values of P approaching 1 are ruled out. We
shall see later (corollary 4) that the qualitative behaviour indicated by this proposition is
essentially best possible, since positive solutions are there proved to exist for all P not exceeding
3 —4In2, and for P arbitrarily near 1 if £ is suitably large.

8. Existence of solutions (I)

In this section we shall establish the existence of solutions for certain ranges of the parameters
k and P. Note that according to the work of the preceding section one cannot expect to solve the
given problem for arbitrary values of these parameters.

Let , P be fixed parameter values, and let f, @ be a pair of functions satisfying the conditions
F(0) = 8(0) = 0 and such that also

1
f: O(Inm) and 0<Q<1. (30)

Then £, @ will be called a subsolution of the system (14), (15) provided

~

2 7e _ 7a G(%)
j +f < k (1_x2)2l (0 <x< 1)’ (31)
Q"+2f0 >0

where G denotes the function (12) with 2 replaced by 2 and P by P. The following main result
now holds.

TuroreM 3. Let f, @ be a subsolution for given parameter values k and P. Then there exists a solution
£, Q of the system (14), (15) for the same k and all values of P not exceeding P. Moreover

f=f Q=0

Proof. Consider the method of successive approximations given by the scheme

Q=1
z 102 12 . dt
- _ 2 n—1 n—1 _ a2
and forn > 1, G,(x) = 2(1—x) fo ————~—(1_t2)2dt+ 2xL 010t P(x—x?%),
G (#)

Sntfn= kzm, Ja(0) =0,

QL +2£,2, =0, 2,(0)=0, 2,(1) =L

We shall show that this scheme is well defined, and that for 0 < x < 1

fAzfhz o 2f, 2202,202,> ... 0. (32)
The proof will be by induction. We establish first that f; and £, are well defined, and that
ALzh 220, > 0. (33)

To begin with, because 0 < £ < 1 and P > P it follows that

G(x) < Gy(x) = (1=P) (x—x2).

29-2
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Since fi= gt 1(2)2 —f? (34)

the function f therefore serves as a minorant for f;, while
1
max (0, %(1 —P) k2ln 1_—-7\7)

serves as a majorant (see lemma 4). Thus according to standard results in the theory of ordinary
differential equations, (34) has a solution f; on the full interval 0 < x < 1, and the first inequality
of (33) holds.t

Using (30) we see from the above construction that f; = O(In 1/(1 —x)). Hence f] is integrable
and £, can be determined by quadrature as noted in the proof of lemma 1. It remains to prove
the second inequality of (33). We require the following comparison lemma.

Suppose that for 0 < x < 1 we have

Q" +2fQ" =0, Q”+2f§' >0

together with the boundary conditions 2(0) = 2(0) =
and Q1) =1, 0<1 forx near 1.
Then if f > fwe have Q > O
Proof. Obviously (Q-Q)"+2f(2-0Q) > 2(f-f) 2" >0,
since £’ is certainly positive (see lemma 1). Multiplying through by the integrating factor
exp (2wadx> we find 3 . '
g {(Q_Q)'ex;,(2ffdx)} > 0. (35)
0

Now suppose for contradiction that the function 2 — £ takes on positive values. Then it has a
positive maximum at some point x, < 1. Integrating (35) from x, to x > x,, we get
(Q-92) >0, 2-03>0(x)—02(x,)) >0 for x> x,

contradicting the boundary conditions at x = 1. The lemma is therefore proved.

Applying the lemma with 2 = Q,, 2 =  now establishes 2, > 0. The remaining inequality
of (33), namely Q, > Q,, is obvious since 0 < 2, < 1 (see lemma 1).

Now consider the induction hypothesis

Lz 2fzf Q=0
which by (33) surely holds when n = 1. Supposing (36) to hold for z( > 1) we shall verify it for
n+ 1. From the fact that P < P we have easily

Gu(%) 2 Gpia(2) > G(x).

L0 >0, (36)

\Y%

Using G,, and G as comparison functions, we see that f,, serves as a majorant for £, ,, and fserves
as a minorant. Thus f, ., is well defined and

o= forn 21,

i.e. the first inequality of (36) holds for z + 1. Moreover, since f,, ,, is O(In 1/(1 —x)) it is clear that
0,11 1s well defined (see the earlier discussion of £2,).

By applying the lemma, first with 2 = 2, Q = Q,,, and then with Q = Q, ,, O = 0, we
obtain 2, > 2,,, > Q. Hence the second inequality of (36) also holds for n + 1.

1 See Coddington & Levinson (1955) chapter 1.
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The validity of (36) is thereby established for all 7, and accordingly (32) is proved. That is, the
sequences {2,}, {f.} are monotonically decreasing and bounded below for fixed values of x.
Consequently they converge to limits:

Qn >0, fu—>/f

Evidently 2 > £ and f > f. It remains to show that these functions are solutions of (14), (15).
Inview of (36) the functions f, are uniformly bounded on any closed subinterval of [0, 1). Thus
fn converges uniformly on closed subintervals of [0, 1). Moreover the functions f, are uniformly
integrable according to the construction.
It now follows from the explicit integral formula for 2, in terms of f, that 2, converges
uniformly to 2 on 0 < x < 1. Furthermore, 2 is twice differentiable on 0 < ¥ < 1 and

Q'+ 2fQ = 0.

Having shown that £, converges uniformly to £, it follows that G, converges uniformly to G;
hence letting n tend to infinity in the relation

o= [ o)

we find that fis differentiable on 0 < ¥ < 1 and is a solution of (14). This completes the proof of
theorem 3.

CoROLLARY 1. If (14), (15) is solvable for parameter values k, P, it is solvable for the same k and all
P < P. For the solutions in question, if P decreases then f increases.

If the solution f is positive, then the problem is solvable with f positive for all k > k and P < P. For the
solutions in question, if P decreases and k increases then f increases. Finally, if P > 1 then the problem is
solvable for all k < k and P < P.

Proof. The first statement follows at once from theorem 3, since any solution of (14), (15) is also
a subsolution (see lemma 6). Now suppose f is positive. The main proof then applies word for
word (with £ > ), once we notice that £2G > %2G because G is positive.

When P > 1 we note that G is negative (lemma 3). Thus #2G > £2G when k < k. The main
proof then applies word for word.

In the statement of corollary 1, the phrase ‘ (and indeed by successive approximations)’ could
be added following the words ‘it is solvable’. In particular, this means that if a solution (positive
solution) exists at all for given £, P, then the method of successive approximations will converge to
a solution (positive solution) for these parameter values. We shall take advantage of this remark
in § 10.

COROLLARY 2. The system (14), (15) is solvable with f positive provided that
P<3-4In2~ 0.224, (37)

Proof. We shall show that f = 0, = « is a subsolution. Indeed, it is enough to verify that the
function G associated with £ = x is positive. By lemma 2, however,
Tode
o (1+12)?
=3—4In2-P > 0,

G'(0) = 2 P

and consequently G > 0 by lemma 3. This completes the proof.
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It should be noted that condition (37) is best possible. Indeed, if P > 3—41In2 then for all
sufficiently small £ no positive solution can exist, according to the remark following proposition 3
in §7.

COROLLARY 3. There exists an absolute constant A ~ 2.85 such that (14), (15) is solvable provided that

PE? < A%,
but is not solvable when (P—1) k* > A%
Proof. We seek a subsolution with & = 0. Then G = P(x2—x), and we can choose f as the

solution of the equation

f'+f2=—Pk2.(—l—x)xé-l—-|-x)_—2 (0<x<1),

with corresponding boundary conditions

J(0) =0, J=0(n(1/1-x)).
It is evident? that there is a constant A > 0 such that this problem is solvable if and only if
Pk? < A%, The approximate value 2.85 for A was determined by a simple computer program. This
proves the first part of the corollary.
Now for any solution of (14), (15), lemma 3 implies

fHfr< 1=Pykt—ss

(I=x) (L+x)

From the remarks above we have — (1 —P)k* < A%, and the remaining part of the corollary
follows at once (note that this part of the result overlaps proposition 1 in § 7).

The preceding three corollaries contain the main existence theorem of this section. In the next
section we shall use a different method to obtain further results.

9. Exustence of solutions (II)

The results of the previous section establish the existence of two of the three possible types of
solutions described by theorem 2. Namely when P < 0.224 we obtain a positive solution f, while
when P > 1 and Pk? < 8.2 we find a negative decreasing solution. These results do not, however,
shed light one way or the other on the existence of the remaining type of solution, namely one
which is first negative, has a single zero, and is positive thereafter. This type of solution seems to be

+ To see this, let S be the set of values of P£? for which the problem is solvable. Clearly § contains zero, and if

fis in S then any value ¢’ < g is also in §. Consequently it is only necessary to show that § is open on the right.
This being the case, let # be in .S and let g be the corresponding solution. Put
— 1 1
=g—n—
£=48 I—»
Then an easy calculation shows that
x
(1—x) (T+x)2

on some interval 1 —y < x < 1. Now let ¢( < 1) be a small positive number such that the equation

g<—(p+1) g

x
h = — €) Tm——————— h2

o) Ty ar 9
has a solution on the interval 0 < x < 1—1v, with 2(0) = 0, A(1 —7) = g(1—1) (the existence of such an ¢ follows
from the fact that we can choose & = g when ¢ = 0, together with standard perturbation theory; Coddington &
Levinson, p. 29). By the previous construction / can be continued throughout the remaining interval 1 -y < ¥ < 1,
with @< & < g. Hence g+ € is in §, as required.
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of particular interest; our purpose here will be to show that such solutions do in fact exist, and
indeed can exist at arbitrarily high values of £.

As motivation for our approach, we observe that for such solutions we have necessarily (see
lemma 2 and theorem 2) 1 024y

G,(O) = 2[0 m-—t)—z—P <0

Let us therefore consider @ = G’(0) as the basic parameter, and correspondingly put
1 o2
P=2| —di—Q. 38
Jomrma-e )
Our object is now to solve (14), (15), (38) for fixed values of Q.
Eliminating P from (12) by using (38), we can write G(x) in the form

L 2ds

G(x)——2f GOt o gy gp gt Q- (39)

o (1=27)? o (1+1)2

Itis apparent from (39) that the method of theorem 3 will not work in the present case, since G'is
no longer a monotone functional of 2; that is, when @ remains fixed we no longer have G > G
when Q > Q. Nevertheless, a modified approach making use of well-known fixed point theorems
can be given.

Consider functions f which are continuous on 0 < x < 1 and satisfy the condition

f=0(In1/(1-x)). (40)
Correspondingly, let us determine £2 by the equation
Q422" =0 (41)

together with the usual boundary conditions; finally let g satisfy the differential equation

, G
g +g2 = kz(l _(J;)z)z: g(O) =0,

where G(x) is the function introduced above. This defines a transformation

f>eg=1f

Note that g need not be determined on the entire interval 0 < x < 1; that is, it may diverge to
— oo atsome pointx = 4 < 1. In any case, our purpose is to find a fixed point fof this transforma-
tion, that is, a function fsuch that 7f exists for 0 < x < 1 and satisfies f = Tf.

To this end, we shall employ a form of the Schauder fixed point theorem. Let X be the space of
continuous functions on the interval 0 < ¥ < 1 with the metric

dist(f,e) = Qmﬁw(—%)—) fge X,
where M,(f8) = Sup |f (%) —g(%)].

m

Clearly a sequence of functions f, converges in X to a function fif and only if f,, — funiformly on
any compact subinterval of [0, 1). Moreover, under the topology induced by the metric, X is
obviously a locally convex linear topological space (see Dunford & Schwartz 1958, for definitions).
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This being the case, if X is a closed convex subset of X which is continuously mapped by T into
a conditionally compact subset of itself, then 7 has a fixed point in X (Dunford & Schwartz,
p. 456; the result stated there is slightly different, but is easily seen to imply the present form).
It should be noted that since X is a metric space, a set 4 is conditionally compact in X if every
sequence of points in 4 has a subsequence converging to a point in X.

THEOREM 4. The system (14), (15) is solvable, with G(x) given by (39), provided that

QF? > — A%
where A is the constant of corollary 3.

Proof. It is necessary to determine an appropriate set X for the application of Schauder’s
theorem.

Let f be a continuous function on 0 < x < 1 satisfying condition (40). We examine in detail
the transformation ¢ = Tf. In particular, with 2 defined by (41), it is clear that

G(x) > Q(x— %)

according to lemma 3. Consequently we have

S+ Ry (€0 =0).

1+x)2

Let the function 7 be defined by the equation

4 2 2 X
T+T —ka‘x—)‘é

As already remarked in the proof of corollary 3 this equation is solvable for the boundary
diti
conditions 7(0) = 0, 7=0(n1/(1—x)),

provided that Q&% > — A% Hence under the hypothesis of the theorem, comparison of the
functions g and 7 yields the relation

g(¥) > r(x).
Also by lemma 3, one has

Gx) < (1=-P) (x=#") < (1+Q) (x—2%)
since P > — @ by (38). Consequently, as in the proof of lemmas 4 and 5,

0, Q<—1’
€0 < (s grmia—o, o1

Combining the preceding estimates, it is clear that under the conditions of the theorem 7'is well-
defined over the full interval 0 < x < 1.
We now choose X to be the set of all functions fe X such that

7(x) < f(x) <0 if @<-1

(%) <f) <HI+Q BIng— if Q> -1,
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Clearly T is well defined for all f € X, and moreover we have TX < X according to the first part
of the proof. Also using the fact that g = 7f satisfies

¢ =Fa lci(il)z—g2’
we see easily that 7.X consists of functions which are uniformly continuous on closed subintervals
of [0, 1). Hence by Arzela’s theorem TX is conditionally compact in X.

The set X is obviously closed and convex in X. Finally, the mapping 7 is continuous on X.
Indeed, using the explicit integral for 2 in terms of £, one sees that if f converges to f; in X then
£ converges uniformly to £2,0n 0 < x < 1. Consequently G converges to G, uniformly on closed
subintervals of 0 < x < 1, and g in turn converges uniformly to g, on such subintervals.

The conditions of Schauder’s theorem are therefore satisfied, and accordingly there exists a
fixed point fof 7. It remains only to note that when £ is defined by (41) and the usual boundary
conditions, then f, 2 satisfy (14), (15). This completes the proof of the theorem.

The preceding theorem obviously establishes the existence of solutions of (14), (15) for all non-
negative values of @ = G’(0). These solutions correspond to parameter values P < 1, and are of
course such that fis positive.

We can in fact be more explicit. Consider a fixed value £ > ¢ and let @ = £—%. For the corre-
sponding solution we have P > 1—12k~% (1 +1nk) by (25). Hence applying corollary 1, there
exist positive solutions whenever

P<1-12k3(1+1nk), (k>e)
Combining this with the result of corollary 2 now proves
COROLLARY 4. There exist positive solutions of (14), (15) whenever
P < max (3—4In2, 1 - 1231+ |Ink])).
The following result answers the question raised at the beginning of the section.

COROLLARY 5. For each k > 0 there exist solutions of (14), (15) such that f is first negative, has a single
zero on 0 < x < 1, and is positive thereafter.

Proof. By the main theorem of the section, there exists for each fixed £ > 0 a solution with
Q = — A%/2k2 If the corresponding parameter value P(£) is less than 1, it is clear by theorem 2
that the solution in question is of the required sort and there is nothing more to prove. We may
thus suppose that P(k) > 1.

Then by corollary 1 the system (14), (15) is solvable for the fixed value £ and for all P < 1. In
particular, a solution exists when P = }(1+ K(k)) where the function K(£) is defined in pro-
position 3. This solution cannot be positive (by proposition 3), and is not negative (since P < 1).
The only remaining possibility is that the solution has the required behaviour. This completes
the proof.

Discussion of results of chapter 111

It is convenient to associate a point in the (P, £~2%) plane with each pair of parameter values P
and £. Then by corollary 1 (§ 8) positive solutions of the system (14), (15) exist for all parameter
values which lie on the left-hand side of a certain fixed monotonically decreasing curve 2 in the
(P, k%) plane. According to corollary 4 and proposition 3 this curve must satisfy the cond ition

max (3—4In2,1-12k~% (1+|Ink|)) < P < K(k). (42)

30 Vol. 271. A,


http://rsta.royalsocietypublishing.org/

L\

A

<
-
3~
olm
~ =
k= Q)
O
= uwv

PHILOSOPHICAL
TRANSACTIONS

A\

y \

Py

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

A

—%

SOCIETY

OF

9

OF

Downloaded from rsta.royalsocietypublishing.org

350 J.SERRIN

Consequently, taking into account proposition 3, the curve approaches the asymptotic value
P = 3—4In2 as k2 tends to infinity, and tends to 1 as £~2 tends to zero.

Similarly, by corollary 1 the zone in which solutions of any kind can exist must be bounded on
the right by a second curve X which is monotonically increasing when P > 1, and has a single-
valued projection on the k-2 axis when P < 1. This curve obviously lies to the right of the first one.
Moreover by corollary 3 and proposition 1 it must satisfy the relation

X%~ < P < max (1, 2u3k~2). (43)

These qualitative results are illustrated in figure 1. Specifically, the region A in which positive
solutions exist is shown bounded by a monotonically decreasing curve with the properties noted

k—2
0f7 § 1
i b
|
B P b
B c
- |
| I |
0.161- ‘ ||
B il
| | | B
NN
i Ll
\l
0.08 ‘ !
|
n LY
A | .
| no solution
] | | L ] | Iy | | | | | ]
0 04 0.8 12 i6 L

Ficure 1. (P, k~?) parameter diagram.

above; similarly, an appropriate curve satisfying (43) is indicated as the boundary of the domain
in which solutions of any sort can exist. Zones B and C are separated by the line P = 1. In zone B
the solution fis first negative and afterwards positive, while in zone C the solution is everywhere
negative (see theorem 2).

Determination of the precise form of the curves 2 and 2’ apparently requires the numerical
calculation of solutions. In the following section we describe the results of such a calculation and
present some representative solutions for several typical values of the parameter £. The curves
in figure 1 are in fact drawn so as to be in agreement with this work (as well as being consistent
with the preceding theory). The dotted lines in zone B are curves along which a = constant
(where F(a) = 0), as interpolated from the numerical results. These curves agree in all respects
with the conditions of proposition 2 and corollary 5. Finally, the line P = 1 separating zones B
and C is found to terminate at the value k2 & 0.122, that is, when £ =~ 2.86. Consequently,
solutions involving a central updraft can exist only at values of £ not greater than this.
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04 -04
k®-25 P-0442 | K®=100 P=04775

Ficure 2. Numerical solution when £ = 5, FicurE 2¢. Numerical solution when & = 10,
P = 0.442 (zone B). P = 0.4775 (zone B).

L @ 2
0.8
b— F,
04—
B F
’._..
| ] | | | | ] L
0 05 10%
L F »
=04} -04
~ k=5 P=10 T %100 P=0.30
-0.8- -0.8-
FicurE 2a. Numerical solution when £ = 2.236, FicurE 2d. Numerical solution when £ = 10,
P =1 (zone C). P = 0.3 (zone A).
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10. Numerical results

The discussion at the close of the previous section indicates the need for precise numerical
results concerning those parameter values for which solutions exist.

The University of Minnesota CDC 6600 digital computer was programmed to seek solutions
according to the successive approximations scheme described in § 8. As we have already observed
following corollary 1, this procedure will converge whenever a solution exists. Numerical solu-
tions were obtained for the fifteen values

k2 = 1,5,10, 15, 20, 25, 30, 34.2, 40, 60, 100, 200, 625, 1000, 3600,

and for corresponding pressure ratios P starting from P = 0.2 and continuing at appropriate
increments AP = 0.002 until breakdown occurred. Figure 1 has been drawn so as to be in
agreement with these calculations. In addition, a successive approximation procedure was
carried out for the modified function G(x) defined by (39) with @ = 0, in order to obtain a more
accurate determination of the curve which separates zone A and zone B.

Figure 2a—d show the result of the numerical calculations in four typical cases, corresponding
respectively to parameter values falling in zones C, B (two of these) and A. Stream surfaces{ of
the accompanying flows are portrayed in figure 3a—d; these graphs illustrate in detail the
qualitative behaviour described in the introduction and in chapter 1. The stream surfaces in
each are drawn for equally spaced values ¥ of the streamfunction (see § 1). In consequence, the
mass flux of the secondary flow between each of the respective stream surfaces is the same; the
particular values of ¥ are of course unimportant because of the geometrical similarity of the flow
patterns.

The fluid motions shown in figures 34 and ¢ involve an inflow near the boundary plane and a
downdraft along the vortex axis. This is of course balanced by a corresponding outflow which
occurs at an intermediate range of angles: in figure 34 the outflow occurs between 35° and 73°
with an asymptotic direction 60°, angles being measured from the horizontal; for the flow in
figure 3¢ the outflow occurs between 13° and 54°, and asymptotically approaches 21°. Because
of the interest in motions of this sort, it is valuable to exhibit another example of this type; see
figure 4a. The asymptotic direction here is precisely 45°, Isobars of the corresponding pressure
field were calculated from equations (3) and (4) and are shown in figure 4; the pressure decreases
monotonically as one radially approaches the origin.

The arrangement of the figures on p. 352 emphasizes the continuity of the flow patterns when
k and P are varied. Reading the figures in order 34, 35, 4a, 3¢, 3d, one sees clearly the smooth
transition from upflow (figure 3a) to downflow (figure 34) through the mechanism of a gradually
flattening cascade angle (figures 35, 44, 3¢).

The particular values of P for the flows shown in figures 34, 3¢ and 4 were chosen so that the
point (P, k~2) lies on, or nearly on, the right-hand boundary of zone B. Thus the value of P in
these cases not only makes the pressure distribution on the boundary plane conform as nearly
as possible to the corresponding free vortex flow (see the remarks following the proofof theorem 1),
but also results in a minimum axial speed near the vortex line (see theorem 2 (iii)). The related
choice P = 1 for the flow shown in figure 34 was made for essentially the same reasons.

Now let ﬁ(k) denote the value of P associated with the right-hand boundary of zone B.
Similarly, let # = B(k) be the asymptotic direction associated with the parameters £, P (k), for

1 More precisely, their cross-section with planes 6 = constant.
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0 < £~2 £ 0.122. From corollary 1 in § 8, B is the maximum cascade angle possible for the given value
of k. The calculated graph of #(k) is shown in figure 5. When £~2 > 0.122 the flow corresponding
to P = 1 can be considered to have a cascade angle (or asymptotic direction) of 90°, From this
point of view we could define A(k) = 90° for all £~2 > 0.122, and continue the graph in figure 5
indefinitely to the right at this constant value. (It also follows from corollary 1 that, for fixed £,
the asymptotic direction increases monotonically as P goes from the left- to the right-hand
boundary of zone B).

B
90°-

70°
50°-
30°+

10°

L1 I I | | | |

l | | ]
0.04 0.08 0.12
Ficure 5. Maximum cascade angle £ against turbulence level .

k2
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SUMMARY

In the preceding work we have introduced a class of exact solutions of the Navier—Stokes
equations, representing the interaction of an infinite vortex line with a plane boundary surface
at right angles to the line. As discussed in the introduction, the presence of the boundary surface
induces a secondary flow superimposed on the free vortex motion.

Assuming the basic separation of variables given by equations (2), the differential equations
governing the motion then show that the flow can be described in terms of a pair of dimensionless
parameters k and P. Here P is the ratio of the pressure gradient of the actual flow and of the
corresponding free vortex, evaluated on the boundary surface at some fixed radial distance from
the vortex line, and % is defined by the ratio C/2», where C' = lim,_,,7v, is the angular momentum
of the vortex and v is the kinematic viscosity. In laminar motion £ may be considered as a
Reynolds number of the flow; if turbulent motion is assumed then £ is more properly a self-
regulating parameter indicating the basic level of turbulence present.

It is found that exactly three types of secondary flow régimes can exist. In particular, let us
associate to each pair of parameter values £ and P a point in the upper half of the (P, £~2) plane,
as shown in figure 1. For parameter values falling in zone A the secondary flow is directed down-
ward along, the vortex axis and outward near the boundary surface. For values of £ and P falling
in zone B the secondary flow again involves a down-draft along the vortex axis, but there is an
inflow along the boundary surface. This motion inwards is balanced by a compensating outflow
occurring at an intermediate cone of directions around the angle «, = cos~'a. Finally, for values
of k and P in zone C, the secondary flow consists of an updraft along the vortex axis together with
an inflow along the boundary surface. No vortex flow consistent with (2) and the assumed
boundary conditions can exist for values of £, P which fall in the remaining zone. It is im-
mediately apparent from the diagram that motions of the third kind, involving an updraft and
an inflow, can exist only at low values of £, less than approximately 2.86. Since the values of &
appropriate to meteorological phenomena are in many instances apparently somewhat larger
than this (see below) it appears that motions of the third kind need not invariably represent the
typical case of vortex phenomena, a point to which we shall return later. Typical streamlines for
the secondary flows in the three cases above are shown in figures 3 and 4.

The results described in the previous paragraph are found in §4 and in chapter m1. As far as
the mathematical part of the paper is concerned, the main problem which has been left open is the
question of uniqueness, namely whether at most one flow consistent with (2) can exist for a given
pairofvaluesk and P. While this seems highly likely, and while the numerical calculations discussed
in § 10 lead one to the belief that solutions are unique, we have been unable to prove this (on page
927, Goldstik claims that solutions are unique for the case P = 1, but his remarks are unsupport-
ed). In addition to a uniqueness theorem it would also be useful to know that solutions depend
continuously on the parameter values. In view of the complicated nature of the relevant differen-
tial equations both this problem and the question of uniqueness may be quite difficult.

Some final remarks may be added concerning the implications of the above results for various
meteorological phenomena.] Before proceeding with this, however, it is important to make

+ Important surveys of the physical and meteorological aspects of tornadoes, dust whirls, and waterspouts have
been given by Brooks (1951) and Kessler (1970). Morton (1966) in addition to discussing the behaviour of geophysical

vortices also includes a valuable and penetrating discussion of the theoretical aspects of those phenomena. All
of these papers have extensive and useful bibliographies.
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clear the not inconsiderable problems which attend any such interpretation, We have already
argued in the introduction that buoyancy and compressibility effects should not be of major
importance in tornado phenomena, for the speeds are apparently neither so high that com-
pressibility will be important nor so low that buoyancy can exert an immediate effect.t More
significant is the idealization of a tornado core by a line vortex, for in a real fluid the innermost
parts of a vortex surely will not enjoy the inverse distance law of speed which governs a line
vortex. Whether such an idealization is justified is, at our present state of knowledge of viscous
or turbulent vortex cores, a matter which must remain somewhat intuitive, resting ultimately
on the same conviction which justifies the study of line vortices in ideal fluids—the belief that
they are reasonably accurate asymptotic models of the physical world. Following this line of
thought, one could argue that the velocity singularity at the vortex line (and the corresponding
pressure singularity) might reasonably be smoothed out by a matching process analogous to the
Rankine combined vortex of ideal fluid theory. While such a process is to be desired, and might
produce important further insight into the structure of tornado cores, nevertheless lacking such
a desideratum one tends to accept the (admittedly meagre) experimental measurements in
tornadoes which point to the validity of the inverse distance law of speed except in the neigh-
bourhood of the core itself (see particularly Lewis & Perkins 1953) and to accept the intuitive
picture (Morton 1966) of a tornado or waterspout as a strongly concentrated core of vorticity
embedded in a weakly vortical environment, for which the circulation in circular paths outside
the core is relatively constant.

In modelling large-scale meteorological phenomena one must assume the flow to be turbulent
if any progress is to be made. Following the semi-empirical approach of Boussinesq we thus
consider v to be a virtual or eddy viscosity, a self-regulating parameter of the flow. There is of
course no reason to expect a precise value for v nor in fact is one necessary; on the other hand,
numerical and empirical evidence given by Schlichting (1960, chapter 23) indicates that a
reasonably accurate hypothesis is v % ogr,
where ¢ is the flow speed, 7 the radial distance from the axis of the vortex, and o a dimensionless
factor in the range 0.1 to 0.2. By (2), (6), (7) the quantity ¢r is constant along radii through the
origin, takes the value 0 at the boundary plane, and tends to C as one approaches the vortex axis.
One may then put v & $0C throughout the flow field with fair approximation.} Thus we are led
to consider values of the parameter £ = C/2v in the approximate range

k=3 to k="1.

Naturally, rather than taking this a priori point of view we could equally well consider £ as a
parameter to be determined by observational evidence.

With £ fixed, numerical values of P presumably should be as near to 1 as possible in order for
the pressure distribution to follow most nearly that in a free vortex (see the remarks following
theorem 1). For values of £ between 3 and 7, this places the parameter point (P, £~2) on the
curved part of the right-hand boundary of zone B; that is, P = IS(k) where Is(k) was defined in
the previous section. The associated motions exhibit an inflow along the boundary plane and a

t Vonnegut has argued that electrical activity may be important in certain tornado phenomena; in such cases
the present analysis would evidently be insufficient.

1 Another procedure, computationally and theoretically more difficult, would be to set v = o"(a) C where o (o)

is some function deliberately chosen to reflect a dependence of the turbulence level on the angle e. This approach
would also seem to be in agreement with Turner’s view (1966, p. 400) of self-regulating turbulence in a tornado.
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descending motion along the axis. The corresponding cascade angle as determined from figure 5
varies from 89° when £ = 3 to 33° when £ = 7. Figures 34 and 44 illustrate two flows from this
range of parameter values, those for £ = 5 and k£ = 5.85. The associated pressure fields are also
of interest, since the visible funnel of a tornado or waterspout is caused by the condensation of
water vapour when the dynamic pressure falls below the local vapour pressure (Brooks 1951).
Consequently the outline of a funnel cloud should approximately represent an isobar of the
motion. The general appearance of the equipressure lines in figure 44, and especially their
gradual widening at the top, agrees in this respect with the typical configurations of tornado and
waterspout funnels.

There is considerable observational evidence concerning the form of dust and mist cascades
at the foot of tornadoes and waterspouts, both descriptive and in the form of photographs taken
by persons who had, so to speak, the presence of mind to reach for their cameras rather than
run for their cellars.

Figure 64, plate 2, is a historic photograph of a waterspout off Cottage City, Martha’s
Vineyard, 19 August 1896. Though the photograph has suffered from poor development
especially at the critical point where the waterspout meets the horizon, one may nevertheless
estimate the cascade angle to be about 40° to 45°. The straight funnel and almost stationary
aspect of this waterspout are also particularly remarkable. Figure 65, plate 2, shows a tornado
at Elbow Lake, Minnesota. The cascade angle averages about 40°; in this case the inclination of the
vortex axis explains the fact that the angle is different on the two sides of the tornado. Figure 6¢,
plate 3, shows a similar example, this one from Kansas (the ubiquitous telephone pole dominates
the scene as usual). Figure 64, plate 3, is a particularly good picture of the destructive tornado
of 11 April 1965 which struck Elkhart, Indiana. Althought the dust funnel is more fully developed
here than in the previous pictures, we again see a strong conical outflow, the average angle of the
right hand debris cone being about 48°. Figure 6¢, plate 4, is a beautiful photograph of a
tornado whose cascade angle is either 90° (that is, upflow throughout the vortex as in mode C)
or very nearly 90°. A number of further photographs can be found on pages 24, 88, and 136 of
Flora’s monograph (1954).

If air flow in a tornado is assumed to follow the pattern associated with zone B, and if dust or
debris accurately traces the motion, then material swept up from the area near the foot of the
vortex would become concentrated on the conical stream surface defined by the angle # and
would appear to the observer as a dark region with a conical lower boundary, beneath which the
air is clear. Therefore to the extent that debris (or mist) in figures 6a to 6d faithfully traces the air motion,
we obtain specific observational evidence in_favour of mode B, and of the associated occurrence of descending air
motion in the core of tornadoes whose foot reaches to the ground. As Professor Lighthill has noted in a
private communication, the main problem in identifying the debris shower with the air motion
is that debris is subject to gravity and centrifugal force in addition to the swirling motion of the
air. Gravitational and inertial effects on dust are doubtless slight over the time scales involved
and consequently can be ignored. Centrifugal effects, however, are certainly larger, but whether
they can account for cascades in a flow with a central updraft is doubtful. There are a number of
reasons for this, but perhaps the strongest is simply that the lower boundaries of observed cascades
are relatively straight and well defined. Assuming that such cascades of dusty debris were in fact
caused by centrifugal effects in an air motion otherwise involving a simple inflow and updraft,
the vertical component of the air velocity would have to fall off like the cube of the radius, which
appears unlikely. The random distribution of size among the dust or debris particles would also
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dictate a variety of trajectories and accordingly a badly defined cascade boundary, accentuated
further by what would seem to be an unstable moving front (Taylor instability). The appearance
of the cascade itself thus argues against centrifugal force as the generating mechanism, though
naturally this feature will have some moderating effect.t The author has seen motion pictures in
which large pieces of debris were swirled out at approximately 45° while the dust cascade stood
at about 60°. If centrifugal force were the prime mechanism one would expect a very much
larger relative effect on the heavier debris; it would thus seem more reasonable to view the dust
as a tracer of the air flow and the larger debris alone as significantly affected by centrifugal force.

An extreme example of a dust cloud is shown in figure 6 f, plate 4. The tornado was 11 000 feet
distant and was moving at a speed of about 15 miles/h to the left. It is difficult to explain the
immense size of the cloud by centrifugal force; moreover, were there a significant central updraft
it is hard to imagine that the funnel could have remained unobscured by debris. One may
conjecture that the dust cloud is the result, therefore, of a prolonged cascade effect at a fairly low
angle. If we estimate this intuitively from the figure to be about 30°-35°, the corresponding £ is
about 7, indicating a relatively low level of turbulence. Significantly this tornado not only moved
slowly but had a high degree of coherence since it remained actively in contact with the ground
and seriously destructive for some 14 hours.

The possibility of central downflow in a tornado is reinforced by the careful observational
evidence of Hoecker (1960), who writes, ‘ A sequence of photographs of [a] tornado on file [shows]
the ground-based debris cloud increasing in diameter as the suspended funnel widened and
lowered toward the ground. No debris was seen to rise in the region beneath the cut-off tip of the
condensation funnel but all of it ascended exterior to the tapered cylindrical funnel which
widened upward. In the pictures and movies of the Dallas tornado no large clouds of dust or
spray, or chunks of structures were observed ascending along the trunk when the trunk was
touching the ground. Had any large chunks been carried upward inside the funnel, surely a few
would have been thrown outward through the funnel wall by centrifugal force much as they were
observed to do when the funnel tip had retracted.” The problem of descending flow has also been
logically considered by Morton (1966). He concludes that ‘The radial flow at ground level is
inwards towards the low-pressure core, and hence the net vertical flow must be upward; however,
this does not imply that the flow need be upward over- the whole core section, and it is
quite possible that under appropriate circumstances there may be downflow near the axis’.
Following a consideration of Hoecker’s work, he states further, * When the funnel descends to
the ground the column of dust and debris often forms a shell which is clearly separated from the
funnel within. Such a shell might be formed by particles swept up between an outer flow spiralling
in and up, and an inner flow spiralling down the axis and then out and up to form a cellular core;
and this seems more plausible than the traditional explanation that the dust column is formed by
centrifugal separation of material raised in a strong upflow near the funnel axis, which explains
neither the frequent separation between shell and inner core nor the obviously cylindrical shell-
form sometimes observed.’

Some direct observations of downflow have also been reported. E. M. Brooks, in the Com-
pendium of meteorology, states that ‘whirling air coming down at 1800ft/min has actually been
encountered by a glider in a desert dust whirl’, and M. Hale, in a private communication to the
author, has described the flight of a naval airplane through a mild waterspout, in which the plane

1 The fact that figure 6¢ shows no cascade is itself not an argument against centrifugal force, since the dust
carried aloft may be relatively fine and dry.
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Serrin Phil. Trans. R. Soc. Lond. A, volume 271, plate 2

FicurE 6a. Waterspout off Martha’s Vineyard, 19 August 1896. (Courtesy Dukes County Historical Society,
Edgartown, Mass.)

F1cure 6b. Tornado at Elbow Lake, Minnesota, 5 September 1969. (Photograph by Olaf Dybdal.)

(Facing p. 358)
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Phil. Trans. R. Soc. Lond. A, volume 271, plate 3

Ficure 6¢. Tornado in Kansas, 21 April 1967,
Ficurk 6d. Tornado at Elkhart, Indiana, 11 April 1965. (Photograph by Paul Huffman.)
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Serrin Phil. Trans. R. Soc. Lond. A, volume 271, plate 4

F1cUrE 6¢. Tornado at Enid, Oklahoma, 5 June 1966. (Environmental Science Services
Administration photograph by Leo Ainsworth.)

height of funnel
2852 ft

I

Ficure 6f. Tornado at Scottsbluff, Nebraska, 27 June 1955. (Drawing made from
measured photograph, Van Tassel 1955, p. 257.)

¢——— width of dust cloud =5687ft ———»|
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was seen to experience a downward turn. In addition to direct reports of this kind, a series of
interesting experiments has been conducted by Ward (1956). In laboratory-generated vortices
maintained by a relative low-pressure region above the vortex location, Ward has observed
combined inflow at the lower boundary and descending air motion in the core at certain critical
combinations of the flow parameters when the motion becomes turbulent. The theoretical work
of Sullivan (1959) and Bellamy-Knights (1970) likewise admits the possibility of central down-
drafts in vortex cores, though as we have remarked in the introduction their models do not
effectively reflect either the adherence condition at the boundary surface or the fact that the
velocity should approach zero at large radial distances. Kuo (1967) has determined approximate
numerical solutions of the equations representing vortex motion in an unstably stratified atmo-
sphere, and finds again the possibility of central downflow. Emphasizing the possible complexity
of the flow situation, Turner (1966) has presented approximate solutions of the Navier—Stokes
equations with annular downdrafts and a central updraft. His work, like that of Sullivan,
assumes solid rotation at large radial distances.

While the preceding discussion has focused particularly on the observational evidence for flow
patterns of type B, this was held necessary in view of the widely disseminated opinion that
tornadoes and waterspouts are invariably updraft phenomena. It should not be concluded from
this particular emphasis, however, that updraft phenomena on the other hand are unlikely or
unusual. Besides the observational evidence of figure 6¢, plate 4, and other similar photographs,
Hoecker (1960) specifically notes that ‘the air flow pattern in a tornado is complex and changes
from one tornado to another and may change from time to time in any one tornado’. Similarly,
Morton says ‘It may be noted that there is no reason why tornado vortices should all be dynami-
cally similar.” To the extent that the present model represents tornado phenomena, it bears out
both statements, since for different values of £ the resulting motions are not dynamically similar,
nor is it necessary that £ retain a constant value through the life of a given tornado. On the other
hand, one qualitative attribute of the model remains valid irrespective of the choice of £, provided
only that the parameter P is determined by the physically motivated relation P = P(k). Indeed,
the corresponding flows are then of type B if £ > 2.86 and of type C with P = 1 when £ > 2.86:
in either case the motion near the boundary plane is inwards toward the vortex axis. Observational evidence
(Brooks 1951) on this point is convincingly in agreement.

Although the conditions £ < 2.86, P =1 are consistent with observational evidence (see
particularly figure 6¢) and with the prevalent inflow-updraft theory, nevertheless, we have
earlier concluded that £ would tend to fall in the range 3 to 7. The difficulty here is, however,
more apparent than real. One must not, to begin with, place excessive confidence in empirical
values of v carried over from one situation to another, so that we need not automatically eliminate
values of k& which remain slightly less than 3. Alternately, when £ = 3 the cascade angle is
approximately 89°, and within any reasonable limits of accuracy this amounts to a motion with
a central updraft. Finally, the various reservations in the basic model which we have discussed
earlier must surely be taken into consideration in applying the conclusions.

Insummary, beyond the details of numerical computation and the idealization of the modelling
process, the present discussion indicates the possibility of a complete analysis of the steady state
interaction of a line vortex and a boundary plane in a viscous fluid. The family of solutions which
has been obtained moreover displays a number of the diverse effects observed in both tornadoes
and waterspouts, and places particular emphasis on the possibility of centrally descending air
motion as a realistic flow pattern in geophysical vortex phenomena.
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'itGure Ga. Waterspout off Martha’s Vineyard, 19 August 1896. (Courtesy Dukes County Historical Society,
Edgartown, Mass.)

Ficure 6. Tornado at Elbow Lake, Minnesota, 5 September 1969. (Photograph by Olaft Dyhdal.)
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F1GURE G¢. Tornado in Kansas, 21 April 1967.

FiIGURE 64d. Tornado at Elkhart, Indiana, 11 April 1965. (Photograph by Paul Huffman.)
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FiGure 6Ge. Tornado at Enid, Oklahoma, 5 June 1966. (Environmental Science Services
Administration photograph by Leo Ainsworth.)
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